
15

The final chapter is in essence a review of the past, an assessment 
of the present, and a forecast of possible futures of BOR. Covering 
a wide range of topics “ranging from the modeling of thought and 
behavior and the incorporation of behavioral factors in models to how 
people understand models and how thought and behavior is influenced 
by modeling work”, the book makes a clear case for incorporating 
behavior into OR projects. The objective of illustrating “behavior with 
models”, “behavior in models” and “behavior beyond models” has 
clearly been achieved in this publication. This is a great reference for 
those who want to get familiarized with BOR.  

As early as September 1964 during the first international conference 
held by the Operational Research Society with the theme “Operational 
Research and the Social Science”, Sir Charles Goodeve, stated: 
“operational research people are very much concerned with change and 
can deal with the logic, including the economics, of it. But attitudes of 
people - managers, technicians, workpeople, salesmen, customers etc. - 
can throw the best of predictions into confusion”. These are words that 
ring true, even today.  The book Behavioral Operational Research is 
therefore an important and essential addition to further enhance and 
broaden the impact of OR as a discipline. 
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The highly competitive transportation industry has put pressure 
on carriers to increase efficiency. Collaboration has been 
encouraged by public authorities since it serves such ecological 
goals as reducing road congestion, noise pollution, and harmful 
emissions. 

In horizontal collaboration, carriers form coalitions in order to 
perform parts of their logistics operations jointly. By exchanging 
transportation requests, they can operate more efficiently. In 
the full truckload market, different types of auctions have been 
successfully applied to meet these goals (e.g. Sheffi 2014; Kuyzu 
et al. 2015). However, in less than truckload (LTL) settings, the 
application of these methods becomes more challenging. The 
exchange of requests can be organized through combinatorial 
auctions, where collaborators submit requests for exchange 
to a common pool. In combinatorial auctions, requests are 
not traded individually but are combined in bundles. This is of 
particular importance in vehicle routing, where a request might 
be worthless unless combined with others. Figure 1 shows such 
an example for 3 carriers with their pickup and delivery requests. 

If a bidding carrier’s price is accepted, the carrier receives the full 
bundle. The carrier with a rejected bid does not get any item in 
the bundle. This eliminates the risk of obtaining only a subset of 
requests that does not fit into the current request portfolio. 

Alternatively, generation of bundles can be moved to the carriers 
themselves. Thus, the auctioneer could offer the set of requests 

without grouping them into bundles. The carriers then give their 
bids on self-created packages of requests. Since the auctioneer 
cannot guarantee that all requests will be assigned to carriers, 
the outsourcing option is included. In this case, a carrier can get 
a set of requests that exceeds its capacity. 

Without outsourcing, an LTL combinatorial transportation 
auction typically follows a 5-phase procedure (Berger and 
Bierwirth, 2010):

1. Carriers decide which requests to put into the auction 
pool.
2. Auctioneer generates bundles of requests and offers them 
to the carriers.
3. Carriers place their bids for the offered bundles.
4. Auctioneer allocates bundles to carriers based on their 
bids (winner determination problem).
5. Collected profits are distributed among the carriers.

Combinatorial auctions can be effective mechanisms to allocate 
transportation requests (e.g., Ledyard et al., 2002; Song and 
Regan, 2003; Krajewska and Kopfer 2006; Berger and Bierwirth, 
2010; Ackermann et al., 2011; Dai et al., 2014). Nevertheless, each 
of the 5 auction phases bears a complex and at least a partly 
unsolved decision problem. In the first phase, participating 
collaborators can decide either on self-fulfilment, i.e. they 
plan and execute their transportation requests with their own 
capacities, or to offer some of them to other carriers. Aiming at 
network profit maximization, carriers should try to offer requests 
that are valuable for other network participants. Otherwise, the 
auction mechanism will not yield improved solutions. However, 
the identification of requests that are valuable for collaborators 
is not trivial since the actors do not want to reveal sensitive 
information. This auction phase is illustrated in Figure 2. 

An intuitive solution would be to let the carriers solve a team 
orienteering problem and put requests that do not appear in 
the optimal tour into the pool (Archetti et al., 2014). However, 
Gansterer and Hartl (2016a) show that the best request evaluation 
criteria take geographical aspects into account. They clearly 
dominate pure profit-based strategies. Schopka and Kopfer 
(2016) analyse several other heuristic pre-selection strategies. 

In the second phase, the requests in the pool are grouped into 
bundles. These are then offered to participating carriers. From 
a practical point of view, offering all possible bundles is not 
manageable, since the number of bundles grows exponentially 
with the number of requests that are in the pool. Gansterer 
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and Hartl (2016b) show that the complete set of bundles can 
efficiently be reduced to a subset of attractive ones. They 
develop a proxy function for assessing the attractiveness of 
bundles under incomplete information. This proxy is then used 
in a Genetic Algorithms-based framework that aims to produce 
attractive and feasible bundles. With only a little loss in solution 
quality, instances can be solved in a fraction of the computational 
time compared to the situation where all possible bundles are 
evaluated. 

Bundles are then offered to the carriers in Phase 3. By giving a 
bid on a bundle, a carrier reflects its willingness to acquire the 
bundle. Typically, a bid is based on the carrier’s marginal profit, 
which is the difference of the profits including and excluding the 
bundle in the tour. Hence, for each bid, a routing problem has to 
be solved. Buer (2014) proposes heuristics for the identification 
of promising bundles in order to decrease the bidding effort. 

Phase 4 addresses the winner determination problem. Bundles 
are assigned to carriers in such a way that the total coalition gain 
is maximized. Models for the winner determination problem 
need to ensure that requests (that can be part of more than one 
bundle) are only assigned once. Carriers should not receive more 
requests than they can handle, unless the outsourcing option 
is included. The framework proposed by Gansterer and Hartl 
(2016b) guarantees that a feasible assignment of bundles to 
carriers is found without making it necessary for carriers to reveal 
sensitive information and without the need of outsourcing. 
The winner determination problem is an NP-hard optimization 
problem (Rothkopf et al., 1998). Figure 3 shows a possible re-
assignment of requests after the winner determination problem. 

The main advantage of horizontal collaboration in logistics is 
that the total profit of the coalition will be higher than the sum of 
the carriers’ stand-alone profits. However, the collaboration gain 
should be distributed in such a way that each partner benefits 
from participating in the coalition (Phase 5). If this is not the case, 
carriers may leave the coalition. The profit sharing method should 
additionally force companies to avoid strategic behavior that 
negatively influences the coalition gain, and reward behavior 
that benefits the coalition (Vanovermeire et al., 2014). Strategic 
behavior can occur in each of the phases. Behavior that negatively 
impacts the coalition might involve carriers not using their real 
marginal costs for generating bids or not following the rules for 
selecting requests. For example if in Figure 2, Carrier A selects A1 
and A3 which for it are not attractive, the opportunity for greater 
profits for the coalition is affected. Nonetheless, the impact of 
strategic behavior on the outcome of these collaborations is still 
unknown.

Admittedly, many challenging questions still have to be answered 
to make combinatorial auctions efficiently applicable to real-
world LTL settings. For instance, the strong relationship between 
the phases has not been investigated. In addition, the realistic 
assumption that carriers might behave strategically opens many 
interesting research questions. Therefore, collaborative vehicle 
routing is an active research field with a high practical importance 
in the LTL area. Combinatorial auctions have the huge potential 
of becoming powerful mechanisms for increasing collaboration 
profits.  Figure 3: Possible re-assignment of requests to carriers. 
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Figure 1: Illustration of the non-collaborative tours of 3 carriers. For carrier B, 
buying request C4 alone will probably not be profitable. However, the extra travel 
cost will probably be compensated if C5 is acquired additionally.

Figure 2: Carriers submit request to the pool. Carrier A selects requests based 
on marginal profits, while carriers B and C take geographical information into 
account.
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Lifelong Learning in Optimisation

A food-processing factory manufactures different products 
based on customer orders from a stock of raw ingredients. They 
want to create weekly schedules that ensure that all orders 
are manufactured on time. They commission an optimisation 
algorithm from the OR department at the local University, 
supplying historical data to allow the algorithm to be tuned, 
and at first are very pleased with the results.  Over time, however, 
the company begins to notice that the quality of the schedules 
produced seems to be deteriorating, with several orders delivered 
late, causing them to lose confidence in the algorithm.

Unfortunately, the experience of the factory is typical – the 
market in which the factory operates is dynamic: their customer 
base slowly changes over time, the type of products demanded 
by consumers changes, and the availability of the raw ingredients 
fluctuates due to changes in suppliers. The optimisation algorithm 
that was tuned to work well on the original problem instances 
no longer works on the new problem instances that now have 
very different characteristics. Of course, the manager can return 
to the OR department to ask for the algorithm to be re-tuned – or 
perhaps a completely new algorithm is required – but either way 
it’s a time consuming process that requires considerable expert 
input.

As human problem-solvers, we cope much better than machines 
with adapting our problem-solving processes to change. We 
modify existing processes, drawing on prior experience if relevant, 
and generate completely new strategies if the magnitude of the 
change demands it.  In contrast, optimisation algorithms rarely 
work in this way - an algorithm is usually designed and tuned to 
work well across a class of instance using a range of examples 
drawn from the class and then ‘fixed’.  At best, some adaptive 
methods can alter parameter values online as a single instance 
is solved, based on feedback from the solver, but any knowledge 
gained during this process is lost as soon as the algorithm 
terminates. 

In response to this, we propose a new model of optimisation 
system – in which systems not only learn how to solve a problem 
but learn continuously over a lifetime. Such systems improve their 
problem solving abilities over time: retaining knowledge, using it 
to improve future learning, and generating new knowledge when 
required.
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